初学入门¶
CPU
GPU
Linux
入门
本节以Minst手写体数字识别为例,介绍LuoJiaNET在通用图像处理上的使用方法
配置运行信息¶
LuoJiaNET通过导入context某块,调用context.set_context`来配置运行需要的信息,如运行设备(CPU/GPU/Ascend),并行计算模式等。
[1]:
import os
import argparse
from luojianet_ms import context
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
[WARNING] ME(14150:139661937116992,MainProcess):2022-03-27-18:25:38.169.152 [luojianet_ms/run_check/_check_version.py:135] LuoJiaNet version 1.0.0 and cuda version 10.2.89 does not match, please refer to the installation guide for version matching information: https://www.luojianet_ms.cn/install
[WARNING] ME(14150:139661937116992,MainProcess):2022-03-27-18:25:38.180.644 [luojianet_ms/run_check/_check_version.py:140] LuoJiaNet version 1.0.0 and nvcc(cuda bin) version 10.2 does not match, please refer to the installation guide for version matching information: https://www.luojianet_ms.cn/install
在上述代码样例中,运行使用图模式,计算设备选用GPU。
下载数据集¶
我们示例中用到的MNIST数据集是由10类28∗28的灰度图片组成,训练数据集包含60000张图片,测试数据集包含10000张图片。
以下示例代码将数据集下载并解压到指定位置。
[2]:
import os
import requests
requests.packages.urllib3.disable_warnings()
def download_dataset(dataset_url, path):
filename = dataset_url.split("/")[-1]
save_path = os.path.join(path, filename)
if os.path.exists(save_path):
return
if not os.path.exists(path):
os.makedirs(path)
res = requests.get(dataset_url, stream=True, verify=False)
with open(save_path, "wb") as f:
for chunk in res.iter_content(chunk_size=512):
if chunk:
f.write(chunk)
print("The {} file is downloaded and saved in the path {} after processing".format(os.path.basename(dataset_url), path))
train_path = "datasets/MNIST_Data/train"
test_path = "datasets/MNIST_Data/test"
download_dataset("https://luojianet-website.obs.myhuaweicloud.com/notebook/datasets/mnist/train-labels-idx1-ubyte", train_path)
download_dataset("https://luojianet-website.obs.myhuaweicloud.com/notebook/datasets/mnist/train-images-idx3-ubyte", train_path)
download_dataset("https://luojianet-website.obs.myhuaweicloud.com/notebook/datasets/mnist/t10k-labels-idx1-ubyte", test_path)
download_dataset("https://luojianet-website.obs.myhuaweicloud.com/notebook/datasets/mnist/t10k-images-idx3-ubyte", test_path)
下载的数据集文件的目录结构如下:
./datasets/MNIST_Data
├── test
│ ├── t10k-images-idx3-ubyte
│ └── t10k-labels-idx1-ubyte
└── train
├── train-images-idx3-ubyte
└── train-labels-idx1-ubyte
数据处理¶
数据集对于模型训练非常重要,好的数据集可以有效提高训练精度和效率。 LuoJiaNET融合LuoJiaNet特性,提供了用于数据处理的API模块 luojianet_ms.dataset
, 用于存储样本和标签。 在加载数据集前,我们通常会对数据集进行一些处理,luojianet_ms.dataset
也集成了常见的数据处理方法。 首先导入LuoJiaNET中luojianet_ms.dataset
和其他相应的模块。
[3]:
import luojianet_ms.dataset as ds
import luojianet_ms.dataset.transforms.c_transforms as C
import luojianet_ms.dataset.vision.c_transforms as CV
from luojianet_ms.dataset.vision import Inter
from luojianet_ms import dtype as mstype
通用数据集处理主要分为四个步骤:
定义函数
create_dataset
来创建数据集。定义需要进行的数据增强和处理操作,为之后进行map映射做准备。
使用map映射函数,将数据操作应用到数据集。
进行数据shuffle、batch操作。
[4]:
def create_dataset(data_path, batch_size=32, repeat_size=1,
num_parallel_workers=1):
# 定义数据集
mnist_ds = ds.MnistDataset(data_path)
resize_height, resize_width = 32, 32
rescale = 1.0 / 255.0
shift = 0.0
rescale_nml = 1 / 0.3081
shift_nml = -1 * 0.1307 / 0.3081
# 定义所需要操作的map映射
resize_op = CV.Resize((resize_height, resize_width), interpolation=Inter.LINEAR)
rescale_nml_op = CV.Rescale(rescale_nml, shift_nml)
rescale_op = CV.Rescale(rescale, shift)
hwc2chw_op = CV.HWC2CHW()
type_cast_op = C.TypeCast(mstype.int32)
# 使用map映射函数,将数据操作应用到数据集
mnist_ds = mnist_ds.map(operations=type_cast_op, input_columns="label", num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(operations=resize_op, input_columns="image", num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(operations=rescale_op, input_columns="image", num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(operations=rescale_nml_op, input_columns="image", num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(operations=hwc2chw_op, input_columns="image", num_parallel_workers=num_parallel_workers)
# 进行shuffle、batch、repeat操作
buffer_size = 10000
mnist_ds = mnist_ds.shuffle(buffer_size=buffer_size)
mnist_ds = mnist_ds.batch(batch_size, drop_remainder=True)
mnist_ds = mnist_ds.repeat(count=repeat_size)
return mnist_ds
其中,batch_size
为每组包含的数据个数,现设置每组包含32个数据。
创建模型¶
使用LuoJiaNET定义神经网络需要继承luojianet_ms.nn.Module
,所有算子都继承自Module类
神经网络的各层需要预先在__init__
方法中定义,然后通过定义call
方法来完成神经网络的构造。经典的LeNet的网络结构,定义网络各层如下:
[5]:
import luojianet_ms.nn as nn
from luojianet_ms.common.initializer import Normal
class LeNet5(nn.Module):
"""
Lenet网络结构
"""
def __init__(self, num_class=10, num_channel=1):
super(LeNet5, self).__init__()
# 定义所需要的运算
self.conv1 = nn.Conv2d(num_channel, 6, 5, pad_mode='valid')
self.conv2 = nn.Conv2d(6, 16, 5, pad_mode='valid')
self.fc1 = nn.Dense(16 * 5 * 5, 120, weight_init=Normal(0.02))
self.fc2 = nn.Dense(120, 84, weight_init=Normal(0.02))
self.fc3 = nn.Dense(84, num_class, weight_init=Normal(0.02))
self.relu = nn.ReLU()
self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
self.flatten = nn.Flatten()
def call(self, x):
# 使用定义好的运算构建前向网络
x = self.conv1(x)
x = self.relu(x)
x = self.max_pool2d(x)
x = self.conv2(x)
x = self.relu(x)
x = self.max_pool2d(x)
x = self.flatten(x)
x = self.fc1(x)
x = self.relu(x)
x = self.fc2(x)
x = self.relu(x)
x = self.fc3(x)
return x
# 实例化网络
net = LeNet5()
定义模型损失函数¶
损失函数是模型迭代训练的目标函数。
LuoJiaNET支持的损失函数有SoftmaxCrossEntropyWithLogits
、L1Loss
、MSELoss
等。这里使用交叉熵损失函数SoftmaxCrossEntropyWithLogits
。
[6]:
# 定义损失函数
net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
阅读更多有关在LuoJiaNET中使用损失函数的信息。
LuoJiaNET支持的优化器有Adam
、AdamWeightDecay
、Momentum
等。这里使用Momentum
优化器为例。
[7]:
# 定义优化器
net_opt = nn.Momentum(net.trainable_params(), learning_rate=0.01, momentum=0.9)
阅读更多有关在LuoJiaNET中使用优化器的信息。
训练及保存模型¶
LuoJiaNET框架提供了模型保存的函数ModelCheckpoint
。 ModelCheckpoint
可以保存网络模型和参数,以便进行后续的微调操作。
[8]:
from luojianet_ms.train.callback import ModelCheckpoint, CheckpointConfig
# 设置模型保存参数
config_ck = CheckpointConfig(save_checkpoint_steps=1875, keep_checkpoint_max=10)
# 应用模型保存参数
ckpoint = ModelCheckpoint(prefix="checkpoint_lenet", config=config_ck)
LuoJiaNET提供model.train
接口进行网络训练,LossMonitor
可监控训练过程中损失值的变化。
[9]:
# 导入模型训练需要的库
from luojianet_ms.nn import Accuracy
from luojianet_ms.train.callback import LossMonitor
from luojianet_ms import Model
def train_net(model, epoch_size, data_path, repeat_size, ckpoint_cb, sink_mode):
"""定义训练的方法"""
# 加载训练数据集
ds_train = create_dataset(os.path.join(data_path, "train"), 32, repeat_size)
model.train(epoch_size, ds_train, callbacks=[ckpoint_cb, LossMonitor(125)], dataset_sink_mode=sink_mode)
通过运行model.eval接口,在训练过程中交叉验证模型训练的精度。
[10]:
def test_net(model, data_path):
"""定义验证的方法"""
ds_eval = create_dataset(os.path.join(data_path, "test"))
acc = model.eval(ds_eval, dataset_sink_mode=False)
print("{}".format(acc))
这里把train_epoch
设置为1,对数据集进行1个迭代的训练。在train_net
和 test_net
方法中,我们加载了之前下载的训练数据集,mnist_path
是MNIST数据集路径。
[11]:
train_epoch = 1
mnist_path = "./datasets/MNIST_Data"
dataset_size = 1
model = Model(net, net_loss, net_opt, metrics={"Accuracy": Accuracy()})
train_net(model, train_epoch, mnist_path, dataset_size, ckpoint, False)
test_net(model, mnist_path)
epoch: 1 step: 125, loss is 2.3076770305633545
epoch: 1 step: 250, loss is 2.3006627559661865
epoch: 1 step: 375, loss is 2.2903192043304443
epoch: 1 step: 500, loss is 2.2869787216186523
epoch: 1 step: 625, loss is 0.7294149398803711
epoch: 1 step: 750, loss is 0.23233938217163086
epoch: 1 step: 875, loss is 0.35183870792388916
epoch: 1 step: 1000, loss is 0.09208559989929199
epoch: 1 step: 1125, loss is 0.23124144971370697
epoch: 1 step: 1250, loss is 0.5591455101966858
epoch: 1 step: 1375, loss is 0.3474830389022827
epoch: 1 step: 1500, loss is 0.06516227126121521
epoch: 1 step: 1625, loss is 0.2508251667022705
epoch: 1 step: 1750, loss is 0.053207263350486755
epoch: 1 step: 1875, loss is 0.12930162250995636
{'Accuracy': 0.9709535256410257}
使用以下命令运行脚本:
python lenet.py
加载模型¶
[12]:
from luojianet_ms import load_checkpoint, load_param_into_net
# 加载已经保存的用于测试的模型
param_dict = load_checkpoint("checkpoint_lenet-1_1875.ckpt")
# 加载参数到网络中
load_param_into_net(net, param_dict)
[WARNING] ME(14150:139661937116992,MainProcess):2022-03-27-18:25:59.207.506 [luojianet_ms/common/parameter.py:339] The parameter definition is deprecated.
Please set a unique name for the parameter 'Parameter (name=Parameter, shape=(6, 1, 5, 5), dtype=Float32, requires_grad=True)'.
[WARNING] ME(14150:139661937116992,MainProcess):2022-03-27-18:25:59.209.732 [luojianet_ms/common/parameter.py:339] The parameter definition is deprecated.
Please set a unique name for the parameter 'Parameter (name=Parameter, shape=(16, 6, 5, 5), dtype=Float32, requires_grad=True)'.
[WARNING] ME(14150:139661937116992,MainProcess):2022-03-27-18:25:59.212.473 [luojianet_ms/common/parameter.py:339] The parameter definition is deprecated.
Please set a unique name for the parameter 'Parameter (name=Parameter, shape=(120, 400), dtype=Float32, requires_grad=True)'.
[WARNING] ME(14150:139661937116992,MainProcess):2022-03-27-18:25:59.214.117 [luojianet_ms/common/parameter.py:339] The parameter definition is deprecated.
Please set a unique name for the parameter 'Parameter (name=Parameter, shape=(120,), dtype=Float32, requires_grad=True)'.
[WARNING] ME(14150:139661937116992,MainProcess):2022-03-27-18:25:59.215.509 [luojianet_ms/common/parameter.py:339] The parameter definition is deprecated.
Please set a unique name for the parameter 'Parameter (name=Parameter, shape=(84, 120), dtype=Float32, requires_grad=True)'.
[WARNING] ME(14150:139661937116992,MainProcess):2022-03-27-18:25:59.217.616 [luojianet_ms/common/parameter.py:339] The parameter definition is deprecated.
Please set a unique name for the parameter 'Parameter (name=Parameter, shape=(84,), dtype=Float32, requires_grad=True)'.
[WARNING] ME(14150:139661937116992,MainProcess):2022-03-27-18:25:59.219.100 [luojianet_ms/common/parameter.py:339] The parameter definition is deprecated.
Please set a unique name for the parameter 'Parameter (name=Parameter, shape=(10, 84), dtype=Float32, requires_grad=True)'.
[WARNING] ME(14150:139661937116992,MainProcess):2022-03-27-18:25:59.220.510 [luojianet_ms/common/parameter.py:339] The parameter definition is deprecated.
Please set a unique name for the parameter 'Parameter (name=Parameter, shape=(10,), dtype=Float32, requires_grad=True)'.
[12]:
[]
验证模型¶
我们使用加载的模型和权重进行单个图片数据的分类预测,具体步骤如下:
[13]:
import numpy as np
from luojianet_ms import Tensor
# 定义测试数据集,batch_size设置为1,则取出一张图片
ds_test = create_dataset(os.path.join(mnist_path, "test"), batch_size=1).create_dict_iterator()
data = next(ds_test)
# images为测试图片,labels为测试图片的实际分类
images = data["image"].asnumpy()
labels = data["label"].asnumpy()
# 使用函数model.predict预测image对应分类
output = model.predict(Tensor(data['image']))
predicted = np.argmax(output.asnumpy(), axis=1)
# 输出预测分类与实际分类
print(f'Predicted: "{predicted[0]}", Actual: "{labels[0]}"')
Predicted: "8", Actual: "3"